力扣208——实现 Trie (前缀树)

这道题主要是构造前缀树节点的数据结构,帮助解答问题。

原题

实现一个 Trie (前缀树),包含 insert, search, 和 startsWith 这三个操作。

示例:

1
2
3
4
5
6
7
8
Trie trie = new Trie();

trie.insert("apple");
trie.search("apple"); // 返回 true
trie.search("app"); // 返回 false
trie.startsWith("app"); // 返回 true
trie.insert("app");
trie.search("app"); // 返回 true

说明:

  • 你可以假设所有的输入都是由小写字母 a-z 构成的。
  • 保证所有输入均为非空字符串。

原题url:https://leetcode-cn.com/problems/implement-trie-prefix-tree/

解题

前缀树的意义

我们用前缀树这种数据结构,主要是用在在字符串数据集中搜索单词的场景,但针对这种场景,我们也可以使用平衡树哈希表,而且哈希表可以在O(1)时间内寻找到键值。那为什么还要前缀树呢?

原因有3:

  1. 前缀树可以找到具有同意前缀的全部键值。
  2. 前缀树可以按词典枚举字符串的数据集。
  3. 前缀树在存储多个具有相同前缀的键时可以使用较少的空间,只需要O(m)的时间复杂度,其中 m 为键长。在平衡树中查找键值却需要O(m log n),其中 n 是插入的键的数量;而哈希表随着大小的增加,会出现大量的冲突,时间复杂度可能增加到O(n)

构造前缀树的节点结构

既然是树,肯定也是有根节点的。至于其节点结构,需要有以下特点:

  1. 最多 R 个指向子结点的链接,其中每个链接对应字母表数据集中的一个字母。本题中假定 R 为 26,小写拉丁字母的数量。
  2. 布尔字段,以指定节点是对应键的结尾还是只是键前缀。

接下来让我们看看节点结构的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
class TrieNode {

TrieNode[] nodes;

boolean isEnd;

public TrieNode() {
// 26个小写英文字母
nodes = new TrieNode[26];
// 当前是否已经结束
isEnd = false;
}

/**
* 当前节点是否包含字符 ch
*/
public boolean contains(char ch) {
return nodes[ch - 'a'] != null;
}

/**
* 设置新的下一个节点
*/
public TrieNode setNode(char ch, TrieNode node) {
// 判断当前新的节点是否已经存在
TrieNode tempNode = nodes[ch - 'a'];
// 如果存在,就直接返回已经存在的节点
if (tempNode != null) {
return tempNode;
}

// 否则就设置为新的节点,并返回
nodes[ch - 'a'] = node;
return node;
}

/**
* 获取 ch 字符
*/
public TrieNode getNode(char ch) {
return nodes[ch - 'a'];
}

/**
* 设置当前节点为结束
*/
public void setIsEnd() {
isEnd = true;
}

/**
* 当前节点是否已经结束
*/
public boolean isEnd() {
return isEnd;
}
}

接下来就是真正的前缀树的结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
class Trie {

/**
* 根节点
*/
TrieNode root;

/** Initialize your data structure here. */
public Trie() {
root = new TrieNode();
}

/** Inserts a word into the trie. */
public void insert(String word) {
TrieNode before = root;
TrieNode node;
// 遍历插入单词中的每一个字母
for (int i = 0; i < word.length(); i++) {
node = new TrieNode();
node = before.setNode(word.charAt(i), node);
before = node;
}
// 设置当前为终点
before.setIsEnd();
}

/** Returns if the word is in the trie. */
public boolean search(String word) {
TrieNode before = root;
TrieNode temp;
// 遍历查找
for (int i = 0; i < word.length(); i++) {
temp = before.getNode(word.charAt(i));
if (temp == null) {
return false;
}
before = temp;
}
// 且最后一个节点也是终点
return before.isEnd();
}

/** Returns if there is any word in the trie that starts with the given prefix. */
public boolean startsWith(String prefix) {
TrieNode before = root;
TrieNode temp;
// 遍历查找
for (int i = 0; i < prefix.length(); i++) {
temp = before.getNode(prefix.charAt(i));
if (temp == null) {
return false;
}
before = temp;
}
return true;
}
}

提交OK,执行用时:43 ms,内存消耗:55.3 MB,虽然只战胜了87.40%的提交,但试了一下最快的那个代码,和我这个方法在时间上基本没什么差别,应该是当初提交的时候测试用例没有那么多吧。

总结

以上就是这道题目我的解答过程了,不知道大家是否理解了。这道题目可能需要专门去理解一下前缀树的用途,这样可以有助于构造前缀树的结构。

有兴趣的话可以访问我的博客或者关注我的公众号、头条号,说不定会有意外的惊喜。

https://death00.github.io/

公众号:健程之道

健健 wechat
欢迎您扫一扫上面的微信公众号,订阅我的博客!
如果您感觉文章不错,也愿意支持一下作者的话